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Abstract

A new synthetic strategy @ll-Z-[n]benzo[h]annulenes, which is based on the intramolecular pinacol coupling,
followed by the Corey—Winter procedure, has been developed, and three annulenes have been successfully
synthesized using this strategy. © 2000 Elsevier Science Ltd. All rights reserved.
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Cylindrical -conjugated moleculésattract continuing interest as synthetic challergesique
structures, host/guest interactiorfsand organic materials with interesting electric propertiedi-Z-
[n]Benzo[4s]annulened—3 are bowl-shaped hydrocarbons with a medium-sized concavity. Furthermore,
Z,Z,Z,Zpentabenzo-[20]annuleng can be regarded as a precursor of the cyclic Belthich is a
central aromatic belt of § and Go. Although we have previously reported the synthesiZ @,z
tribenzo[12]annulené and its metal complexésthe synthetic methodology is only limited 1an very
low overall yield. Therefore, we developed a new strategy to synthedliz&[n]benzo[s]annulenes

Our new synthetic strategy fde3 is based on the intramolecular pinacol coupling of the corres-
ponding linear polycis-stilbene derivatives, followed by formation of the finatis-double bond using
reductive dehydroxylation as shown in Scheme 1. The second step can be expected to be achieved by the
Corey—Winter proceduré.
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Scheme 1. Synthetic route fi+3

The synthesis of,Z,Ztribenzo[12]annulen& was carried out using the sequence outlined in Scheme
2. Recently, we reported the synthesis and structurg, Biribenzo[12]annulene-1,2-diori# which
was prepared by the intramolecular cyclization of the dialdety¢e=1), followed by Swern oxida-
tion. Although7 consists of two conformational isomerga(and 7b), reduction of7 with NaBH, in
ethanol-CHCI, afforded theerythroisomer8a (80%) with a small amount of thireoisomer8b. The
reaction of8a with TCDI (thiocarbonyldiimidazole) in refluxing toluene led to the thionocarboBate
(78%) which was converted intb (84%) by the reaction with DMPD (1,3-dimethyl-2-phenyl-1,3,2-
diazaphospholidine) (modified Corey—Winter proceddrg)Z,ZTribenzo[12]annulené was synthesi-
zed in 37% overall yield based &(n=1).
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Scheme 2. Conditions: (a) NaBHEtOH, CHCl,, 0°C (80%); (b) TCDI (thiocarbonyldiimidazole), toluene, reflux (78%); (c)
DMPD (1,3-dimethyl-2-phenyl-1,3,2-diazaphospholidine), benzene, reflux (84%)

In analogy with the case ofl, the syntheses ofZ,Z,Z Ztetrabenzo[16]- andZ,Z,Z,Z,Z
pentabenzo[20]annulen@sand 3 were started from the construction of the corresponding dialdehydes
(Scheme 3). Thus, the Sonogashira couplingl®fwith 2-bromobenzaldehyde in the presence of
Pd(PPh)4 and Cul in triethylamine at rt, followed bitbutyldimethylsilylation, produced?2 in 92%
overall yield. Reduction o012 with NaBH,; (93%), followed by partial hydrogenation in the presence of
a Lindlar catalyst (99%) and Dess—Martin oxidafi$(98%) led to thecis-stilbene derivativel 3. The
pinacol coupling ofL3 with a low-valent vanadium complex gave ttlgeo-diol 14 in 92% vyield. The
threo-diol 14 was converted into therythro-diol by a two-step procedure. Thus, Swern oxidatiod4f
led to the diketone which was reduced with Naflthder the chelation-controlled conditions to produce
the erythro-diol (89% based ori4). The erythro-diol was treated with thiophosgene in the presence of
4-dimethylaminopyridine to afford the thionocarbondfe(94%). The reaction ol5 with DMPD in
refluxing benzene produced tleZ, Ztriene-bis(siloxy)ether (83%) which was treated successively with
Bu"4yNF in THF and the Dess—Martin reagent in @b to produce theZ,Z,Ztriene-dialdehydd. 6 in
89% overall yield.

For the synthesis of the tetraene-dialdeh§@gethe cis-stilbene derivativel3 was converted into the
enynel? by a Wittig-type reaction with CBrand PPh (81%), followed by treatment with LDA in THF
(89%). The Sonogashira couplingbf with o-diiodobenzene, followed by desilylation and Dess—Matrtin
oxidation produced the diendiyri8 in 84% overall yield. The partial hydrogenation 8 with the
Lindlar catalyst led td.9 (89%).

The syntheses of the annulerzand 3 starting from the corresponding dialdehyddsand19 were
carried out using a combination of the intramolecular pinacol couplingl modified Corey—Winter pro-
cedure (Scheme 3). The reactiorléfwith VCI3(THF)3 (2 equiv.}* and zinc (2 equiv.) in DMF—CECl
at rt for 1 h produced a mixture of thbreo- anderythro-diols 20aand20b (49 and 25%, respectively)
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Scheme 3. Conditions: (a) Pd(PPNh(1 mol%), Cul (2 mol%), EiN, rt; (b) BUiMe,SiCl, imidazole, CHCI,; (c) NaBH, (2

equiv.), MeOH, CHCI,; (d) H,, Lindar catalyst, benzene, quinoline; (e) Dess—Martin reagentCGH(f) VCI3(THF); (1.1
equiv.), Zn (1.1 equiv.), CECl,, rt; (g) (COCI), (4 equiv.), DMSO (5 equiv.), BN, CH,Cl,, 78°C; (i) CLC=S (1.2 equiv.),
4-dimethylaminopyridine (2.4 equiv.), GBl,, 0°C; (j) DMPD, benzene, reflux; (k) BuNF, THF; (I) CBry, PPh, CH,Cly;

(m) LDA, THF, 78°C; (n)o-diiodobenzene, Pd(PPh, Cul, EgN,

(Scheme 4). Théhreo-diol 20awas converted into therythro-diol 20b by successive Swern oxidation
and NaBH-reduction in 62% overall yield. The reaction2@bwith TCDI in refluxing toluene led to the
thionocarbonat@1 (80%), which was reacted with DMPD in refluxing benzene to produce the desired
all-Z-tetrabenzo[16]annulerin 62% yield!? In a similar manner, the intramolecular coupling1¢f

with VCI3(THF)3 (3.5 equiv.) and zinc (3.5 equiv.) in DMF-GRBI, at rt for 3.5 h gave a mixture of the
threo- anderythro-diols 22aand22b in 80% yield. In order to line up the stereochemistry of the diol
part, the mixture oR2aand22bwas converted into the correspondingdiketone by Swern oxidation.
Reduction of the diketone with NaBHfforded theerythro-diol 22bin 72% overall yield. The reaction of
22bwith TCDI led to the thionocarbonaf8 (74%) which was treated with DMPD in refluxing benzene
to produce the [20]annuler8x(72%)12
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Scheme 4. Conditions: (a) V&THF)z, Zn, DMF, CH,Cl,, rt; (b) (COCI), DMSO, EtN, CH,Cl;; (c) NaBH,, MeOH, CH.Cl,,
0°C; (d) TCDI, 4-toluene, reflux; (e) DMPD, benzene, reflux

Although the [12]annulenghas a rigid framework witkes, symmetry, théH and*C NMR spectra of
the [16]annuleng show temperature dependence. Thus#&MR spectrum oR in CDClz at  50°C
showed slightly complex signals consisting of one AB quarte.(/4 and 6.64)=12 Hz) and two sets
of AA°BB? multiplets ( 7.36, 7.29, 6.52 and 6.45), which suggested thatlopted &Cp,-symmetric
conformation. However, the spectrum of the same sample gradually broadened along with elevating the
temperature, and the signals coalesced at about 0°C. At 50°C, the spectrum showed a simple pattern
corresponding t&4,-symmetry, and the activation energy for this dynamic process is calculated to be
12.7 kcal mol ! using the VTC NMR measurements. Based on #eNMR spectra, the structure af
was established as a stacking fa2mat low temperature. The— interaction of the benzene rings may
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prefer the stacking structu@s, and the steric repulsion between théhydrogen of the benzene rings
destabilizes th€,, structure of2.
f
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In contrast to the results obtained frdnthe 'H and'3C NMR spectra o8 showed no temperature
dependence. Thus, ti@&;,-symmetric spectra, which consisted of a set of’BR? multiplets ( 6.95
and 7.02) and a singlet (6.47) in the'H NMR and 4 signals at 126.5, 129.1, 129.7, and 136.3 in
the 13C NMR, observed at rt, were almost unchanged even2°C except for a slight broadening of
the signals. This result suggests that the molecular framewdkady be more flexible than that &f
Interestingly, the olefinic proton & was observed at a higher field than the corresponding signdls of
andz, reflecting the more crowded structure of the five benzene rings.

As shown in Fig. 1, the structure 8fwas determined by X-ray analysi¥When2 was recrystallized
from CH,Cl,—hexane, colorless plates and prism2afere obtained. The structure Bfconfirms the
expected stacking form with approximafe symmetry. A pair of benzene rings is stacked face-to-face
with a distance of 3.4 A, whereas the other two are apart from each other to form a hinge-like structure.
The stacked benzene rings are located parallel with a slightly deviated overlap, presumably due to release
of the steric repulsion between the central olefinic hydrogens.

Fig. 1. ORTEP diagram o2. Selected bond lengths [A] and angles [?]: C1-C2, 1.34(1); C2—-C3, 1.49(1); C3-C4, 1.40(1);
C4-C5, 1.49(1); C5-C6, 1.34(1); C1-C2-C3, 125.5(8); C2-C3-C4, 121.5(9); C2-C1-C16, 117.7(8)
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